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6. The numerial algorithm applied a onsolidate Reynolds andFavre averaging proess for the turbulent variables. The turbulene model is the lassial κ − ǫ. The turbulentinner layer is modeled by veloity wall laws and temperature wall laws. The remaining non-linearities, due to lawsof wall, are treated by a minimal residual method. The numerial results for heat transfer, veloity, temperature,hydrodynami and thermal boundary layers are ompared with experimental data, in addition the numerial resultsare also ompared with empirial orrelation results. The Reynolds number range of the modeled �ows, based onthe length of �at plate is plaed between 10
5

< Re < 10
7. Two di�erent physial ases are analyzed, in the �rstone the veloity and the temperature �eld are unoupled. In the seond ase the veloity and the temperature �eldare strongly oupled.keywords: Convetion, Flat plate, turbulene, wall laws, turbulene models, �nite elements.1. IntrodutionThe objetive of this work is to analyze the e�ieny of the methodology used by the solver Turbo2D in themodeling of the fored onvetion heat transfer in turbulent boundary layers, with and without the ouplingbetween the veloity and the temperature �elds.To make these analysis two distint physial situations, in the point of view of the relation between theveloity and temperature �elds, were hosen. In the �ows studied experimentally by Reynolds et al. (1958) andby Taylor et al. (1990) the thermal and hydrodynami boundary layers are learly unoupled. In the Ng (1981)test ase a strong dependeny between both �elds is observed.The extension and the omplexity of the oupling existing between the turbulent �elds of momentum andenergy depends on the intensity of the veloity, pressure and temperature gradients involved, on the geometryof the physial solid boundary of the �ow and also, on the thermodynami behavior of the �uids involved inthe proess. The degree of di�ulty and the omputational ost of the numerial modeling of the problem arediretly related to existing oupling degree between the turbulent �elds of momentum and energy.The test ases of Reynolds et al. (1958) and of Taylor et al. (1990) represents fored, turbulent andinompressible �ows of air over horizontal, smooth, �at plates. The temperature �elds are spei�ed so that thebeginning of the thermal and the hydrodynami boundary layers are separated by an unheated starting length

ξ. There is an adiabati length in the beginning of eah plate, reated by the equality of the temperatures of thewall and the �ow. The thermal boundary layer begins in the point were both temperatures are di�erentiated,originating a heat �ux between the wall and the �ow. In all the studied situations the thermal boundary layeris developed over isothermal walls.The turbulent air �ows studied by Reynolds et al. (1958) and by Taylor et al. (199), ours with suhveloities, that so in the faster situation, reates Mah numbers under 0,2. The geometry in the solid boundary ofthe �ow is inapable to provide the detahment of the hydrodynami boundary layer or hanging the urvaturesof the �uid movement. Under these onditions, the existing pressure gradients are of low intensity. The higher1



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0373di�erenes of temperature imposed are of 18 K, this means that the heated plate an not hange in a signi�antway the spei� mass, the thermal ondutivity and the dynami visosity of the air.In the absene of signi�ant pressure and temperature gradients, it is possible the adoption of the hypothesisthat the thermodynami proprieties of the �uid are onstants, this ondition is apable to break the ouplingexisting between the equations of onservation of momentum and energy and to make linear the onservationequation of energy.The system of governing equations, simpli�ed by the non variane of the thermodynami proprieties, admitsanalytial solution and, in the omputational point of view, allows the use of less expensive omputationalalgorithms of numerial resolution.Even with the restrition represented by the hypothesis of onstant values for the �uid thermodynamiproprieties, many problems of tehnologial interest an be modeled with this formulation, being distinguishedbeause of its reent importane, the problem reated by the neessity of ooling plates used in eletroni iruitsused in the omputational area.In the Ng (1981) test ase, a turbulent �ow of air at 293 K, totally developed in a wind tunnel is ondued toan horizontal smooth �at plate, heated up to 1250 K. The great di�erene between the temperature of the walland of the �ow, produes important variations in the spei� mass, in the dynami visosity, in the spei� heatsand in the thermal ondutivity of the �uid. The variation of those proprieties with temperature is responsibleby the oupling between the equations of onservation of momentum and energy and by the non linear behaviorof the energy onservation equation.The solver Turbo2D is a program of researh, that is been developed in the Group of Complex Fluid Dynamis- Vortex, of the Mehanial Engineering Department of the University of Brasília. This solver is based on theadoption of the �nite elements tehnique, under the formulation of pondered residuals proposed by Galerkin,adopting in the spatial disretization of the alulus dominium the triangular elements of the type P1-isoP2, asproposed by Brison, Bu�at, Jeandel and Serres (1985).Considering the unertainties normally existing in the initial onditions of the problems that are numeriallysimulated, it is adopted the temporal integration of the governing equations system. In the temporal integrationproess the initial state orresponds the beginning of the �ow, when veloity and pressure �elds are onsiderednulls. The end of the proess ours when the temporal variations of the veloity, pressure, temperatureand other turbulent variables stop. The temporal disretization of the system of the governing equations,implemented by the algorithm of Brun (1988), uses sequential semi-impliit �nite di�erenes, with trunationerror of order 0(∆t) and allows to make linear the equation system at eah step of time.The resolution of the oupled equations of ontinuity and momentum is done by a variant of Uzawa�salgorithm proposed by Bu�at (1981). The statistial formulation, responsible for the obtaining of the system ofaverage equations, is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) deomposition.The Reynolds stress of turbulent tensions is alulated by the κ − ε model, proposed by Jones and Launder(1972) with the modi�ations introdued by Launder and Spalding (1974). The turbulent heat �ux is modeledalgebraially using the turbulent Prandl number with a onstant value of 0,9.In the program Turbo2D, the boundary onditions of veloity and temperature an be alulated by fourveloity and two temperature wall laws. The wall laws used in this work are of veloity are: Mellor wall law(1966), Nakayama and Koyama wall law (1984), the lassi logarithm wall law and the veloity wall law ofCruz and Silva Freire (1998). The temperature wall laws available are: the Cheng and Ng (1982) and the Cruzand Silva Freire temperature wall law. In this work, as the pressure gradients are very low, we used only thelogarithm wall law for veloity and the Cheng and Ng law for temperature. The numerial instability resulted ofthe expliit alulus of the boundary onditions of veloity, trough the evolutive temporal proess, is ontrolledby the algorithm proposed by Fontoura Rodrigues (199). The numerial osillations indued by the Galerkinformulation, resulting of the entered disretization applied to a paraboli phenomenon, that is the modeled�ow, are ushioned by the tehnique of balaned dissipation, proposed by Huges and Brooks (1979) and Kelly,Nakazawa and Zienkiewiz (1976) with the numerial algorithm proposed by Brun (1988).In order to quantify the wideness of range and the onsistene of the numerial modeling done by the solverTurbo2D, the parietal heat �uxes obtained numerially are ompared to the experimental data of Reynolds etal. (1958), Taylor et al. (1990) and Ng (1981), and also to empirial orrelations.2. Governing EquationsThe system of non-dimensional governing equations, for a dilatable and one phase �ow, without internalenergy generation, and in a subsoni regime is:
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ρ(T + 1) = 1. (4)In this system of equations ρ is the �uid spei� mass, t is the time, xi are the spae artesian oordinates intensor notation, µ is the dynami visosity oe�ient, δij is the Kroneker delta operator, gi is the aelerationdue to gravity in tensor notation, T is the temperature, τij is the visous stress tensor in tensor notation, γ isthe ratio of spei� heats, k is the thermal ondutivity, Re is the Reynolds number, Fr is the Froud number,

Pr is the Prandtl number, Mo is the Mah number, and the non dimensional omponents of pressure are:
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(5)More details about the dimensionless proess are given by Brun (1988). In order to simplify the notationadopted, the variables in their dimensionless form have the same representation as the dimensional variables.The Reynolds, Prandtl, Froude and Mah numbers are de�ned with the referene values adopted in this proess.2.1. The Turbulene ModelIn this work all the dependent variables of the �uid are treated as an average value plus a �utuation of thisvariable in a determinate point of spae. In order to aount variations of spei� mass, the model used appliesthe well known Reynolds (1985) deomposition to pressure and �uid density and the Favre (1965) deompositionto veloity and temperature. In the Favre (1965) deomposition a randomize generi variable ϕ is de�ned as:
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. (6)Applying the Reynolds (1895) and Favre (1965) deompositions, to the governing equations, and taking theaverage value of those equations, we obtain the mean Reynolds equations:
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µt = Cµρ̄
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. (14)The turbulent heat �ux is modeled algebraially using the turbulent Prandl number Prt equal to a onstantvalue of 0,9 by the relation
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. (15)In the equation (14) Cµ is a onstant of alibration of the model, that values 0, 09, κ represents the turbulentkineti energy and ε is the rate of dissipation of the turbulent kineti energy. One that κ and ε are additionalvariables, we need to know there transport equations. The transport equations of κ and ε were dedued byJones and Launder (1972), and the losed system of equations to the κ − ε model is given by:
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+ ũj

∂
(
ρ̄T̃
)

∂xj

=
∂

∂xj

[(
1

Re Pr
+

1

Ret Prt

)
∂T̃

∂xj

] , (18)
∂ (ρ̄κ)

∂t
+ ũi
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∂ũi

∂xj

+
∂ũj
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] , (24)with the model onstants given by:
Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .2.2. Near Wall TreatmentThe κ − ǫ model is inapable of properly representing the �uid behavior in the laminar sub-layer, in thebu�er sub-layer and in the beginning of the logarithmi regions of the turbulent boundary layer. To solve thisinonveniene, the standard solution is the use of wall laws, apable of properly representing the �ow in theinner region of the turbulent boundary layer. There are four veloity and two temperature laws of the wallimplemented on Turbo2D ode. In this work, onsidering that no signi�ative pressure gradients are involved,are used the logarithm law for veloity. The logarithm law of the wall for veloity is already well known, andfurther explanations are unneessary.For the near wall temperature, Cheng and Ng (1982) derived an expression similar to loga-rithmi law of thewall for veloity. For the numerial alulation purposes, the intersetion point between laminar and logarithmisub-layers are de�ned at y∗ = 15, 96, with y∗ = ufδ/ν, where uf is the frition veloity alulated by the relation
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ν is the kineti visosity and δ is the distane until the wall. The temperature wall laws for laminar andlogarithmi sub-layers are respetively
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ln y∗ + CNg , (26)where T0 is the environmental temperature and Tf is the frition temperature, de�ned by the relation
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. (27)In the equation (26) the onstants KNg and CNg are, respetively, 0,8 and 12,5. The turbulent Prandtlnumber Prt is assumed onstant and equal to 0,9.For the turbulent kineti energy κ and for the rate of dissipation of the turbulent kineti energy ε, the nearwall values are taken by the following relations
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, (28)with K = 0, 419.2.3. The Stanton numberIn this work the parietal heat �ux is estimated in a non dimension form by using the loal Stanton number,alulated numerially by two distint manners. The �rst one is based on a lassial way to turn the loalparietal heat �ux qx in a dimensionless form:
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. (29)In the equation above, the numerial method to ompute the temperature gradient was by taking thetemperature di�erene between the �rst node of our mesh and the temperature in the wall, and dividing it bythe distane of the �rst node and the wall. This proedement was made, beause the solver uses wall laws, andby this reason our alulus does not goes until the wall.Another way to ompute the loal Stanton number is derived from a diversi�ation of the Reynolds analogymade by Colburn (1933), for �uids with the Prandtl number equal or larger than 0, 5. The Colburn (1933)empirial orrelation establish a relationship between the loal Stanton number Stx, the loal frition oe�ient
Cfx and the Prandtl number Pr:
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power law for temperature and veloitypro�les, where δu and δT are, respetively, the thikness of the veloity and temperature boundary layers,
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. (31)In the equation above, the numerial values for δu and δT were obtained by taking the heights of 300points in the diretion of the �ow, with veloities equal to 0, 99u∞ for the hydrodynami boundary layer, andtemperatures equal to Tw − 0, 99(Tw − T∞) for the thermal boundary layer.To evaluate the auray of the numerial results is possible to determine the loal Stanton number by usingthe empirial orrelation for the unheated starting length problem over �at plate:
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Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0373To alulate the loal frition oe�ient Cfx used in the empirial orrelation, equation (32), is employedthe empirial value for turbulent boundary layer
Cfx
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x . (34)3. Numerial methodologyThe numerial solution of a dilatable turbulent �ow, has as main di�ulties: the oupling between thepressure, veloity and temperature �elds; the non-linear behavior of the momentum and energy equations;the expliit alulations of boundary onditions in the solid boundary; the methodology of use the ontinuityequation as a manner to link the oupling �elds of veloity and pressure.The solution proposed in the present work suggests a temporal disretization of the system of governingequations with a sequential semi-impliit �nite di�erene algorithm proposed by Brun (1988) and a spatialdisretization using �nite elements of the type P1-isoP2. The temporal and spatial disretization implementedin Turbo 2D is presented in Fontoura Rodrigues (1990).4. Numerial ResultsAll the studied experimental test ases onsisted in an horizontal heated �at plate, with reeives air in aparallel diretion. The di�erene between the ases studied are in the value of properties suh as the free streamveloity of the �ow, the size and temperature of the plate, and the size of the unheated starting length. Thephysial parameter ompared from the numerial simulation to experimental data is basially the loal Stantonnumber. The numerial value of the loal Stanton number was alulated of two di�erent ways, by using theequations (29) alled "numerial 1", and using equation (31) alled "numerial 2".The Reynolds et al. (1958) test ase is haraterized by free stream veloities of 19, 5m/s and 21, 9m/s. Inthis work the variation range of the loal Reynolds number is plaed between 105 < Rex < 3, 5x106. There is adi�erene of 11K between the temperature of the plate and of the free stream �ow. The test setion has 1, 53mlong.The test ases of Taylor et al. (1990) are haraterized by free stream veloities of 28m/s and 67m/s. Inthis work the variation range of the loal Reynolds number is plaed between 105 < Rex < 107. There is adi�erene of 18K between the temperature of the plate and of the free stream �ow for the �ow of 28m/s and adi�erene of 12K for the �ow of 67m/s.The test setion has 2, 4m long.In the test ases of Reynolds et al. (1958) and Taylor et al. (1990), the values of the unheated startinglength ξ, hange as the free stream veloity hanges. In this work, the following pro�les were onsidered: for
u∞ = 67m/s the values of ξ are 0, 56m, 0, 86m, 1, 36m; for u∞ = 28m/s the values of ξ are 0, 36m, 0, 76m,
1, 36m; for u∞ = 21, 9m/s the value of ξ is 0, 7243m; for u∞ = 19, 5m/s the value of ξ is 0, 415m. Thesimulations were made for all available results, in both works.The Ng (1981) test ase is haraterized by a free stream veloity of 10, 7m/s. In this work the variationrange of the loal Reynolds number is plaed between 5x105 < Rex < 7, 8x105. There is a di�erene of 957Kbetween the temperature of the plate and of the free stream �ow. The test setion has 0, 25m long. In this asethe plate has the same temperature in all the length of the test setion.The inlet onditions for Reynolds et al. (1958) and Taylor et al. (1990) test ases are uniform pro�les forveloity, temperature, kineti turbulent energy and its dissipation rate. In the Ng (1981) test ase, a turbulentdeveloped pro�le for veloity, temperature, turbulent kineti energy and its dissipation rate. In the top partof both meshes was imposed onditions of atmospheri pressure, ambient temperature and null derivations for
κ, ε, temperature and veloity. In the exit of both meshes was imposed ondition of atmospheri pressure andnull derivations of all other variables.In the �gure bellow, are presented ampliations of the wall region of the two meshes used to simulate thethree test ases.
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Figure 1: Veloity mesh used in Taylor et al. (1990) and Reynolds et al. (1958) test ases6
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Figure 2: Veloity mesh used in Ng (1981) test aseThe adoption of the same mesh in two di�erent test ases was based in the fat that the plate used in theReynolds et al. (1958) simulations is smaller than the plate used in the Taylor et al. (1990) simulations, besides,by the �rst analysis done for Taylor et al. (1990) test ases, was observed that the re�nement level of the meshwas su�ient to desribe the physial phenomenon.In the following graphis, �gures 3, 4 and 5, done for Taylor et al. (1990) and Reynolds et al. (1958)simulations, the empirial orrelation was obtained by the use of equation (32) with the loal frition oe�ientalulated by equation (34), and to the numerial solutions it was used equation (29), alled "numerial 1" andequation (31), alled "numerial 2". So we ould ompare, with the experimental data, the numerial and theempirial orrelation adjust term of a step wall temperature distribution in the alulus of the loal Stantonnumber.
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(d)Figure 3: Loal Stanton number for Taylor et al. (1990) test ase. U∞ = 67 - Isothermal plate (a), ξ=0,56 m(b), ξ=0,86 m () and ξ=1,36 m (d)
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(d)Figure 4: Loal Stanton number for Taylor et al. (1990) test ase. U∞ = 28 - Isothermal plate (a), ξ=0,36 m(b), ξ=0,76 m () and ξ=1,36 m (d)
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(b)Figure 5: Loal Stanton number for Reynolds et al. (1958) test ase. U∞ = 19.5 m/s with ξ= 0,415 m (a) -and 21.9 m/s with ξ=0,7243 m (b)The following graphis, �gures 6 and 7, done for the Ng (1981) test ase, tries to show the preision of theode to alulate the thermal and hydrodynami �eld, in ases were the veloity and the temperature �eld are8



Proeedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0373strongly oupled.In the graphi of the �gure 6 is shown the variation of the hydrodynami and thermal boundary layerthikness as the air �ows over the strongly heated plate of Ng (1981) test ase.In the �gure 7 is shown the variation of the loal Stanton number alulated of two numerial ways. The �rstnumerial value was alulated though the derivation of the temperature in the �rst node of our mesh, Eq.(29),and the seond one was obtained with the relation between the thermal and the hydrodynami boundary layerthikness, Eq.(31), using the numerial value of Cfx.
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(b)Figure 6: Hydrodynami (a) and thermal (b) boundary layer thikness for Ng (1981) test ase.
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Figure 7: Stanton number - Ng (1981) test ase.5. ConlusionsWe an onlude by this work, that the numerial simulation of a omplex turbulent �ow, done by thenumerial methodology employed by the program Turbo2D, produes great results in the modeling of the foredonvetive turbulent heat �ux, in problems were the veloity and temperature �elds are oupled or unoupled.The results shown in �gures 3, 4, 5, 6 and 7, shows that the numerial results alulated by Turbo2D solverprodues very good agreement with the experimental and empirial orrelation results. So, for a onsolidateomputational method that provides good values of the thermal and hydrodynami boundary layer thiknessalong the wall, the numerial heat �ux determined by using equation(31) is very aurate for turbulent �owsover �at plate boundary layers. 9
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